Pharmacology of Antiretrovirals in Cerebrospinal Fluid

Dr. Letendre started his talk by analysing the principles of neuropathogenesis inducted by HIV infection and particularly the involvement of different types of cell (mainly perivascular macrophages and microglia). This last element and the protected anatomical site of central nervous system (CNS) can alter the response to antiretroviral drugs. Blood-brain barrier (BBB), blood-CSF barrier and low levels of drug binding proteins are the affecting element in the CNS and thus limit the passage of many drugs into this compartment. Furthermore pharmacokinetic studies are difficult to perform due to the limited accessibility of CSF and therefore population based PK studies (with sparse sampling strategies) are very useful in this setting. Dr. Letendre specifically showed the determinants of drug penetration across the BBB (figure 1).

Unbound concentrations in blood are one of the major determinants of drug available for action and transport and the data about darunavir were highlighted: unbound concentrations were lower than the total ones but were highly related to drug levels in the cerebrospinal fluid. Dr. Letendre then compared the free fractions of different drugs (and the protein binding of each one) to CSF-to-plasma-ratios: University of San Diego unpublished data are shown in figure 2 where drugs less bound have the highest ratios in the CSF.

The speaker reviewed literature data about the passage of different compounds. Abacavir (ABV) and Tenofovir (TDF) exposures were shown and compared to their in vitro IC50s: ABV penetration was 36% while TDF one was 5% of their respective plasma exposures. NNRTIs were then discussed: efavirenz low CSF penetration (0.5%) was compared to the drug IC50 (0.5ng/ml) thus revealing effective levels in most of the patients. Nevirapine passage ranged, in different studies, from 29 to 63% of plasma concentrations being one of the most penetrant drug in the antiretroviral armamentarium; Cmax and Cmin were several times above the IC50 (respectively 120 and 10 times the value) thus assuring a good pharmacokinetic profile. The same issue emerged for some ritonavir boosted protease inhibitors: as an example data about lopinavir were discussed. The drug passage is quite low (0.23%) but it seemed enough to guarantee CSF concentrations above the IC50 in most of the patients. Atazanavir (boosted or unboosted) was shown by Best and colleagues (AIDS 2009) to have a small CSF-to-plasma ratio (around 1%) and that many patients experienced suboptimal levels (and below the IC50 of 11...
ng/ml). The speaker then analysed some of the determinants of inter-individual variability in CSF concentrations referring to efavirenz (whose plasma concentrations seem to affect its tolerability and that are related to CSF ones) and raltegravir. In the last drug the passage through the blood brain barrier seem to be conditioned by the barrier integrity and thus to the albumin ratio.

The core of Dr. Letendre’s talk was the analysis of the CNS penetration-effectiveness score (CPE) that was published in 2008; the criteria underlying the ranking were discussed and pharmacokinetic, pharmacodynamic and clinical data were used. He showed the revised CPE score that has been modified, with larger patient included and new data available, to have 4 ranks (from 1 to 4) (figure 3).

This new ranking has a strong correlation with the proportion of detectable CSF viral loads thus being an useful tool to describe the effectiveness of HAART regimens in the central nervous compartment (figure 4); such a correlation was stronger when considering patients with undetectable viral load in plasma only.

Dr. Letendre explained the multiple mechanisms of brain damage that can be found in the HIV infection...
and the effect of antiretrovirals. The reduction of HIV replication in the CNS reduce the formation of neurotoxins and improve neuroprotection thus improving the cognitive health of patients; many comorbidities can contribute to the worsening of this damage. Several strategies (anti-inflammatory molecules, antioxidants, growth factors, natural progenitor cells) have been studied in order to improve neuroprotection but, so far, they have not shown any consistent advantage. The improvement of neuroeffectiveness of HAART regimens have been proven to be effective in some, but not all, studies and differences (prospective vs. retrospective) can partially explain these different outcomes. Nevertheless the CHARTER group has collected data, still unpublished, about higher neuropenetration and improved mood (even taking into account antidepressant use) and other groups on its association with better survival (among perinatally infected children and patients with opportunistic infections of the CNS).

The challenges of the study of antiretrovirals in the CNS were then elucidated. The measurement of concentrations in CSF with adequate sample size and the evaluation of new PK enhancers will help in determining the relationship between CSF and brain concentrations (both intracellular and extracellular) and the correlates of inter-individual variability. The most accurate inhibitory concentrations for estimating nervous system efficacy have to be studied as well as clinical tools to assess it (CSF viral loads, neuropsychological testing, etc). This element should be evaluated for single drugs and for combination of antiretrovirals taking into account the neurotoxicity of such compounds. Expert panels should then meet regularly with these precise definitions to update and modify the CPE score and the fields of its application.

Figure 4:

![CNS Penetration-Effectiveness Ranks & HIV RNA in CSF](image)
Guidelines for Authors

In order to send a work refer to this web site: www.haart.it

Direction and Editorial office of “Haart and correlated pathologies”,
C/o MNL srl Largo Respighi, 8 - 40126 Bologna
E-mail info@mnlpublimed.com

The Scientific Committee judge manuscripts suitable for publication, and the articles accepted for publication will be subjected to review by experienced referees. If necessary the authors must provide answers and clarifications to the questions of the referees and complete the lacking information on the manuscript.

Form of Manuscript

- **Title Page**: On title page, provide the complete title and a brief title (not to exceed 40 letters and spaces), 3 or 4 key words, list each contributor's name, highest degree, and institutional affiliation. provide the name, address, telephone number and email address of the contributor responsible for the manuscript and proof. This is the person to whom email confirmation will be sent.

Abstract: The abstract may have up to 250 words, it should be written in English. It should summarize the problems presented and describe the studies undertaken, results, and conclusions. Since the abstract must be explicative at the most, the abbreviations must be reduced at least and must be explained. Do not appear the references in the abstract.

The file will be submitted following the instruction on the website.

The entire manuscript, the references and the figure legends, should be typed double-spaced, using ample margins on standard white heavy-duty bond. All pages should be numbered. The text should have the numeration of the lines. The authors must attend to the typewriting of the text, the correct spelling, grammar and syntax.

Text: The text of the manuscript should be in the following sequence:

- **Introduction**: That describes the matter in object shortly and supplies to the reader one review of the most recent articles on the argument;
- **Methods**: Must give a clear and concise description of the material and/or the subjects uses in the study, must indicate the used instruments and methods and describe the eventual statistics analysis employed;
- **Results**: Must describe what the study has produced and can be exposed in tables or diagrams or figures, and, if possible, the author(s) must be avoided to rewrite the same results in more ways of presentation.
- **Tables, graphs, and figures**: Cite all tables and figures in the text numbering them sequentially as they are cited. Each figure must have a corresponding legend which must be typed, double-spaced, on separate sheet of paper. Do not attach the legends to the figure. Provide a number and title for each table. Explain all abbreviations, symbols, arrows, numbers, or letter used in the figure and provide information on scale and/or magnification. Each graph should be legible and must have a corresponding data sheet. If the Graph is printed by instruments (as cromatograph, etc), a print very marked must be submitted (if possible a corresponding data sheet must be included).
- **Discussion**: Of turns out to you must carry also the deducted conclusions the study and must be equipped with bibliographical citations of the more important literature.
- **Acknowledgments**: Can be write only to an and of the text and must be short. It is possible thank the Institutions and the Organizations that have supplied the financial supports and the names must be written for extensive and the eventual acronyms in parenthesis.

References: May be cited only references present in the text. Cite each reference in the text by senior author’s name and year of publication. References must be listed to fine text in the order in which they appear in the text or in alphabetic order.

List all authors when six or less: when seven or more, list only first three and add et al.

same reference citations follow. The reference list should conform to the style used by the National Library of Medicine and Index Medicus. Spell out singleword journal titles and abbreviate all others as shown in the latest edition of the “List of Journals Index in Index Medicus”. All references must be verified by the author(s).

Journal

Books and Monographs

Chapter in Book